ASYMMETRIC SYNTHESIS OF METHYL $\boldsymbol{N}, \boldsymbol{O}$-DIACETYLSPICIGERINATE

Takefumi Momose* and Naoki Toyooka

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical
University, Sugitani 2630, Toyama 930-01, Japan

Abstract

The first asymmetric synthesis of methyl N, O-diacetylspicigerinate (1) has been achieved, and the absolute configuration of the parent alkaloid (2) was determined to be $2 S, 3 S, 6 R$.

Spicigerine (2), isolated from the leaves of Prosopis spicigera, ${ }^{1}$ is one of the piperidin-3-ol alkaloid and displays interesting biological activities. ${ }^{2}$ Although the gross structure of 2 has been proposed as depicted by spectroscopic studies, ${ }^{1}$ the absolute configuration has not been determined. In the preceding paper, we have exhibited a design for the asymmetric synthesis of the piperidin-3-ol alkaloids (- -cassine and (+)-spectaline starting with both enantiomers of the key piperidine (3). ${ }^{3}$ We have examined the application of the design to the first asymmetric synthesis of methyl N, O-diacetylspicigerinate (1) ${ }^{4}$ and the determination of the absolute configuration of $\mathbf{1}$. The carbon-chain elongation of (-)-3 was achieved in two steps to give the olefin (4) in 74% yield. Hydrogenation of 45 followed by interconversion of the N-acyl afforded the amide [(-)-5] in 73% overall yield. Treatment of $(-)-5$ with TBAF gave the alcohol $[(-)-6]$ in 85% yield. Oxidation of $(-)-6$ and esterification of the resulting acid with diazomethane gave the ester [(-)-7] in 63% overall yield. Finally, conversion of the methoxymethyl in $(-)-7$ into the acetyl furnished the desired ester $[(-)-1]^{6}\left\{[\alpha]_{\mathrm{D}}{ }^{26}-17.2\right.$ (c $\left.1.10, \mathrm{CDCl}_{3}\right)$, lit., ${ }^{1}[\alpha]_{\mathrm{D}}{ }^{25}-6.3$ ($\left.\mathrm{c}^{0.63}, \mathrm{CDCl}_{3}\right)$) in 92% yield.

Reagents and conditions: A Swem oxidn.; B TBSO($\left.\mathrm{CH}_{2}\right)_{9} \mathrm{CH}=\mathrm{PPh}_{3}, 0^{\circ} \mathrm{C} \sim$ room temperature; $\mathrm{C} 5 \% \mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}$; $\mathrm{D}^{\mathrm{n}} \mathrm{PrSLi}$, HMPA-THF, room temperature; E Ac ${ }_{2} \mathrm{O}$, Py; F TBAF, $0^{\circ} \mathrm{C} \sim$ room temperature; G PDC, DMF; $\mathrm{H} \mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; I c. HCl , MeOH

Dedicated to Professor Rolf Huisgen on the occasion of his 75th birthday.

In conclusion, the absolute configuration of $\mathbf{2}$ was determined to be $2 S, 3 S, 6 R^{7}$ by the present asymmetric synthesis.

REFERENCES

1. K. Jewers, M. J. Nagler, K. A. Zirvi, F. Amir, and F. H. Cottee, Pahlavi Med. J., 1974, 5, 1; K. Jewers, M. J. Nagler, K. A. Zirvi, and F. Amir, Phytochemistry, 1976, 15, 238.
2. G. M. Strunz and J. A. Findlay, " The Alkaloids " ed. A. Brossi, Academic Press, New York, 1985, Vol. 26, ch. 3.
3. T. Momose and N. Toyooka, Tetrahedron Lett., 1993, 34, 5785.
4. In order to verify the structure assigned to spicigerine, the alkaloid was converted into (-)-1 by Jewers et al. $\quad{ }^{1} \mathrm{H}$ Nmr spectroscopic data for $(-)-1$ has been reported; see reference 1 .
5. Satisfactory analytical and spectral data were obtained for all new compounds.
6. The spectroscopic properties of (-)-1 were as follows: Ir (neat) $\mathrm{cm}^{-1}: 2926 \mathrm{~s}, 2854,1739 \mathrm{~s}, 1646 \mathrm{~s}$, $1414,1368,1238 \mathrm{~s} ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.14 \& 1.20(3 \mathrm{H}$, each d, each $J=7.1 \mathrm{~Hz}$, due to rotamers), $1.25(17 \mathrm{H}, \mathrm{br}), 1.49(1 \mathrm{H}, \mathrm{br}), 1.57-1.86(6 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.03 \& 2.06(3 \mathrm{H}$, each s, due to rotamers), $2.10(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.39(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.65(3 \mathrm{H}, \mathrm{s}), 3.70(0.5 \mathrm{H}$, br, due to rotamers), $4.21(0.5 \mathrm{H}$, quintet, $J=6.9 \mathrm{~Hz}$, due to rotamers), $4.57(0.5 \mathrm{H}, \mathrm{q}-\mathrm{like}, J=7.5 \mathrm{~Hz}$, due to rotamers), 4.77 $(1 \mathrm{H}, \mathrm{m}), 4.95\left(0.5 \mathrm{H}\right.$, quintet, $J=7.0 \mathrm{~Hz}$, due to rotamers); ${ }^{13} \mathrm{C}-\mathrm{nmr}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 14.29$ \& 15.12 (each CH_{3}, due to rotamers), $19.74 \& 19.82$ (each CH_{2}, due to rotamers), $21.14\left(\mathrm{CH}_{3}\right), 22.06$ \& 22.42 (each CH_{3}, due to rotamers), $24.91\left(\mathrm{CH}_{2}\right), 25.53\left(\mathrm{CH}_{2}\right), 26.21\left(\mathrm{CH}_{2}\right), 27.53 \& 27.78$ (each CH_{2}, due to rotamers), $29.10\left(\mathrm{CH}_{2}\right), 29.21\left(\mathrm{CH}_{2}\right), 29.38\left(\mathrm{CH}_{2}\right), 29.48\left(\mathrm{CH}_{2}\right), 29.53\left(\mathrm{CH}_{2}\right), 29.61$ $\left(\mathrm{CH}_{2}\right), 34.07 \& 34.54$ (each CH_{2}, due to rotamers), $35.28\left(\mathrm{CH}_{2}\right), 45.38 \& 47.19$ (each CH , due to rotamers), $50.27 \& 52.72$ (each CH , due to rotamers), $51.42\left(\mathrm{CH}_{3}\right), 71.25 \& 72.02$ (each CH , due to rotamers), 170.07 (C), 170.23 (C), 174.30 (C); hrms: Calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{5}, 411.2983$; found, 411.2970.
7. Jewers et al. predicted that the absolute configuration of 1 is $2 R, 3 R, 6 S$ by comparison of the ORD of $(-)-2$ with those of the related 3-piperidinol alkaloid cassine and a number of 2 -alkylated piperidines.

Received, 27th April, 1994

